

August 1998

File Number

3209.2

Power Control IC Single Chip Power Supply

The HIP5063 is a complete power control IC, incorporating both the high power DMOS transistor, CMOS logic and low level analog circuitry on the same Intelligent Power IC.

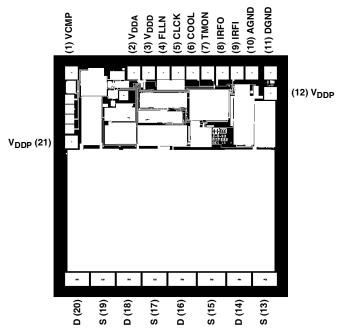
This IC allows the user maximum flexibility in implementing high frequency current controlled power supplies and other power sources.

Special power transistor current sensing circuitry is incorporated that minimizes losses due to the monitoring circuitry. Over-temperature detection circuitry is incorporated within the IC to monitor the chip temperature.

As a result of the power DMOS transistor's current and voltage capability (10A and 60V), power supplies with output power capability up to 100 watts are possible.

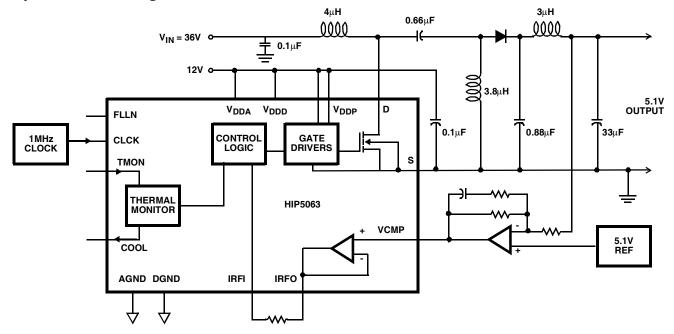
Ordering Information

PART NUMBER	RT NUMBER TEMPERATURE RANGE	
HIP5063DY	0°C to +85°C	21 Pad Chip
HIP5063DW	0°C to +85°C	Wafer

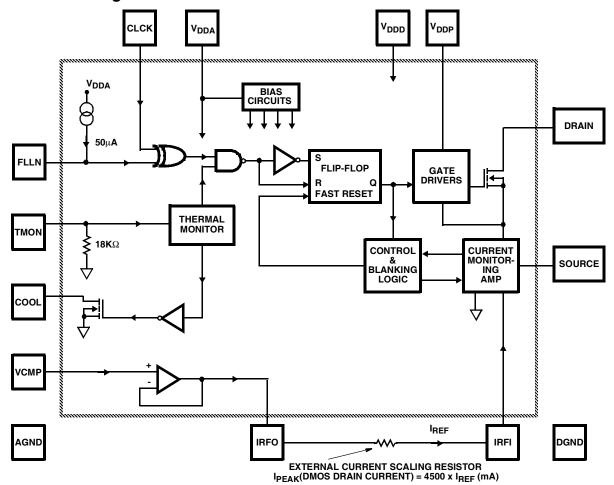

Features

- · Single Chip Current Mode Control IC
- · 60V, 10A On-chip DMOS Transistor
- Thermal Protection
- 1MHz Operation External Clock
- · Output Rise and Fall Times ~ 3ns
- Simple Implementation of High-Speed Current Mode Controlled Regulators and Power Amplifiers
- · Designed for 10V to 45V Operation

Applications


- Single Chip Power Supplies
- Current Mode PWM Applications
- Distributed Power Supplies
- Multiple Output Converters
- Wideband Power Amplifiers for Motor Control

Chip


NOTE: Unused pads are for trim and test. 122 mils x 126 mils (3.1mm x 3.2mm)

Simplified Block Diagram

TYPICAL SEPIC APPLICATION CONFIGURATION

Functional Block Diagram

HIP5063

Absolute Maximum Ratings

Thermal Information

DMOS Drain Voltage0.3V to 60V
DMOS Drain Current
DC Logic Supply0.3V to 16V
Output Voltage, Logic Outputs0.3V to 16V
Input Voltage, Analog and Logic0.3V to 16V
Operating Junction Temperature Range0°C to +110°C
Storage Temperature Range55°C to +150°C

Thermal Resistance	θ JC
(Solder Mounted to	3°C/W Max
0.050" Thick Copper Heat Sink)	
Maximum Junction Temperature	+110 ⁰ C
(Controlled By Thermal Shutdown Circuit)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{DDA} = V_{DDD} = V_{DDP} = 12V$, $T_J = 0^{\circ}C$ to $+110^{\circ}C$; Unless Otherwise Specified

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DEVICE PARA	METERS					
I+	Supply Current	External Clock Input = 1MHz	-	14	-	mA
DMOS TRANS	SISTORS		<u></u>		<u></u>	<u>I</u>
r _{DS(on)}	Drain-Source On-State Resistance	I Drain = 5A, T _J = +25 ^o C	-	-	0.13	Ω
I _{DSS}	Drain-Source Leakage Current	Drain to Source Voltage = 60V	-	1	100	μΑ
CURRENT CO	NTROLLED PWM		•	•	•	•
V _{IO} VCMP	Buffer Offset Voltage (VCMP - V _{IRFO})	IRFO = 0mA to -5mA, VCMP = 0.2V to 7.6V	-	-	125	mV
I _{GAIN}	I _{PEAK} (DMOS _{DRAIN})/I _{IRFI}	ΔI (DMOS _{DRAIN})/Δt = 1A/ms	3.8	-	4.9	A/mA
R _{IRFI}	IRFI Resistance to GND	I _{RFI} = 2mA	150	-	360	Ω
^t RS	Current Comparator Response Time (Note 1)	$\Delta I \text{ (DMOS}_{DRAIN})/\Delta t > 1A/ms$	-	30	-	ns
MCPW	Minimum Controllable Pulse Width (Note 1)		25	50	100	ns
MCPI	Minimum Controllable DMOS Peak Current (Note 1)		200	400	800	mA
CLOCK			<u></u>	ı	<u></u>	I
V _{TH} CLCK	CLCK Input Threshold Voltage		4	-	8	V
V _{TH} FLLN	FLLN Input Threshold Voltage		4	-	8	V
I _{FLLN}	FLLN Pull-Up Current	VFLLN = 0V	-70	-50	-30	μΑ
THERMAL MO	NITOR		•	•	•	
TEMP	Substrate Temperature for Thermal Monitor to Trip (Note 1)	TMON pin open	105	-	135	°C
I _{LEAK} COOL	COOL Leakage Current V _{COOL} = 12V		-	-	1	μΑ
V _{COOL}	COOL Low-State Voltage	I _{COOL} = 2mA, T _J > +125 ^o C	-	-	0.4	V

NOTE:

1. Determined by design, not a measured parameter.

HIP5063

Pin Descriptions

PAD NUMBER	DESIGNATION	DESCRIPTION		
1	VCMP	This is the input terminal from an external error amplifier. A MOS input voltage follower buffers this terminal. The buffer output is the IRFO terminal. The external error amplifier may be either an operational amplifier or a transconductance amplifier like the CA3080. This node may be used for both gain and frequency compensation of the control loop.		
2	V_{DDA}	This is the analog supply input. An external 12V supply is required.		
3	V _{DDD}	Voltage input for the chip's digital circuits.		
4	FLLN	One pad of two clocking terminals. This terminal has an external $50\mu\text{A}$ pull-up current that allow the terminal to be floated or be left open. With FLLN high, (open or tied to V_{DDD}), the ON cycle will start with the falling edge of the CLCK input. With FLLN low or grounded, the DMOS ON cycle will start on the rising edge of the CLCK input.		
5	CLCK	The other clock input pad. An external clock is applied to this terminal. This terminal has no pull-up current or resistance. See FLLN above for phasing information.		
6	COOL	Over-temperature indication is provided at this pad. When the chip temperature is below the the mal threshold, the open drain DMOS transistor is in the high impedance state. When the therm threshold is exceeded, COOL is held low.		
7	TMON	This is the thermal shut down pad than can be used to disable the thermal shutdown circuit. By returning this pad to V _{DDA} or 12V the function is disabled. Returning this pad to ground will en able the thermal monitor function. Thermal threshold occurs at a nominal junction temperature of +125°C.		
8	IRFO	A resistor placed between this pad and IRFI converts the VCMP signal to a reference current for the current sense comparator. The cycle by cycle peak current is set by the value to this resistor according the the equation: $I_{PEAK} = 4500 \text{ x VCMP/R}$. Where I_{PEAK} is in amperes and R is the value of the external resistor in ohms. A maximum VCMP of 8V and a resistor of 1800Ω will keep the drain current below the absolute maximum specification of 20A.		
9	IRFI	See IRFO.		
10	AGND	Analog ground.		
11	DGND	Digital ground.		
12 & 21	V _{DDP}	These pads are used to decouple the high current pulses to the output driver transistors. The capacitor should be at least a $0.1\mu F$ chip capacitor placed close to this pad and the DMOS source pads.		
13, 15, 17, 19	S	Source pads of the DMOS power transistor.		
14, 16, 18, 20	D	Drain pads of the DMOS power transistor.		